Nanoparticle bio-pesticide to improve crop health, germination, and overall yield
A material and method of application for improving crop health and yield.
- Crop fertilizer and pesticides
- Supplementary plant nutrition
- Improved plant defense response chitosan and silica are both beneficial elements capable of stimulating plant metabolic defense mechanisms against diseases, insects, and stress
- High loading capacity and fast-delivery: Mesoporous silica nanoparticles have high surface area and pore volumes, which are capable of holding various nutrients within their structure
- Multiple forms of application: including seed infusion and foliar exposure
- License
- Sponsored research
- Co-development
- Christy Haynes, PhD Professor, Department of Chemistry
-
Related Technology: Mesoporous silica nanoparticles with ultra high porosity
Applications
Key Benefits & Differentiators
Technology Overview
Each year, approximately 20-40% of agricultural crops are lost to diseases, contributing significantly to global food insecurity and financial loss to farmers. Owing to its antibacterial and antifungal properties, chitosan-based materials are being used as biopesticides and insecticides. More recently, foliar sprays with silica nanoparticles are being applied to crops to boost their defense response against diseases, insects, and stress. However, one
limitation with silica applications is that the silicon supply to the plant must be continuous or the disease-suppressing effects will be reduced or non-existent.
To address this limitation, Researchers at the University of Minnesota, in collaboration with The Connecticut Agricultural Experiment Station, have developed a new silica and chitosan-based material, and a novel method of application, where the active components are slowly released to the plants.The material is made up of high surface area mesoporous silica nanoparticles (MSNs) with or without a chitosan coating. By combining the benefits of chitosan and MSNs for crops, and a novel method of application, the researchers observed significantly reduced expression of stress-related genes, and up to 40% decrease in disease severity from Fusarium wilt in watermelon (Citrullus lanatus). In addition, a 70% increase in fruit yield is noted for uninfected watermelon crops. The material has the potential to deliver one or more types of fertilizer and the material properties can potentially be tuned to adjust absorption rate. Thus, a single application of mesoporous silica nanoparticles with or without a chitosan coating as a nanoenabled agricultural amendment to improve crop yield by enhancing resistance against stress and fungal diseases.
Phase of Development
TRL: 3-4Proof of concept. Field and greenhouse study data has been collected on the efficacy of this material against Fusarium wilt (Fusarium oxysporum f. sp. niveum) infection in watermelon (Citrullus lanatus).
Desired Partnerships
This technology is now available for:Please contact our office to share your business’ needs and learn more.
Researchers
-
swap_vertical_circlelibrary_booksReferences (1)
- Buchman, J.T., Elmer, W.H., Ma, C., Landy, K.M., White, J.C. and Haynes, C.L. (2019), Chitosan-Coated Mesoporous Silica Nanoparticle Treatment of Citrullus lanatus (Watermelon): Enhanced Fungal Disease Suppression and Modulated Expression of Stress-Related Genes, ACS Sustainable Chemistry & Engineering
-
swap_vertical_circlecloud_downloadSupporting documents (1)Product brochureNanoparticle bio-pesticide to improve crop health, germination, and overall yield.pdf