Bioink composition suitable for creating cardiac tissues
A material composition suitable for 3D printing of biological structures containing stem cells.
Applications
- Preparation of cardiac tissue mimics for applications in
- drug discovery,
- medical devices,
- tissue replacement, and
- in vitro studies,
- 3D bioprinting of biological structures
Overview
Researchers at Prof. Ogle’s System Regeneration Lab have developed a novel bioink composition that supports 3D printing of biological structures. Creation of biological structures that functionally and structurally mimic native human tissues and organs has been the holy grail of tissue engineering, and 3D bioprinting is being actively investigated as a means to achieve this. One of the critical challenges with bioprinting lies in formulating a bioink composition that is both suitable for printing and able to support cell proliferation. This requirement is particularly difficult to achieve when stem cells are to be grown and differentiated within the printed structures. Requirements such as cell expansion after printing, timely delivery of differentiation factors, prevention of undesired modifications, and capacity to support cells through the differentiation process, all pose additional challenges.
This novel bioink composition developed at the University of Minnesota has been shown to be suitable for 3D printing to create biological structures consisting of stem cells. The researchers have demonstrated that structures printed using this bioink can
- support stem cell maintenance and expansion for at least 21 days
- facilitate delivery of growth factors through the media
- support stem cell differentiation into cardiomyocytes, and
- maintain structural integrity for over 365 days after printing.
Key Benefits & Differentiators
- Cardiac differentiation and electromechanical coupling are allowed to happen in situ
- Functional properties of stem cells and differentiated cells are maintained
- Structurally intact complex structures can be printed/fabricated
- Cell proliferation properties comparable to traditional cell culture methods
- Physical properties of bioink prevents cell death caused due to shear force during printing
- Bioink components amenable to cellular degradation and remodeling
Phase of Development
Bioink prepared and tested. Differentiation of stem cells to cardiomyocytes shown within centimeter-scale printed structures.
ResearchersPublications
Ready for Licensing
This technology is now available for license! The University is excited to partner with industry to see this innovation reach its potential. Please contact us to share your business’ needs and your licensing interests in this technology.
The license is for the sale, manufacture or use of products claimed by the patents.
-
swap_vertical_circlelibrary_booksReferences (0)
-
swap_vertical_circlecloud_downloadSupporting documents (0)Additional files may be available once you've completed the transaction for this product. If you've already done so, please log into your account and visit My account / Downloads section to view them.