

Inverse modeling based approach for land cover mapping

A modeling approach for generating land cover maps for crop growth predictions utilizing satellite images and weather data

Technology ID

2024-054

Category

All Technologies
Engineering & Physical Sciences/Sustainable Technology
Software & IT/Ag IT
Software & IT/Artificial Intelligence
Software & IT/Data Mining
Software & IT/Simulation & Modeling
Agriculture & Veterinary/Ag IT

[View online](#)

IP Status: US Patent Pending; Application No. 18/958,619

Applications

- Land Cover Mapping
- Crop Mapping

Technology Overview

The ability to monitor and predict the growth of crops is essential in numerous areas related to agriculture, including in food security assessment and in developing improved land management practices but current approaches are limited because they depend exclusively on satellite imaging. Researchers at the University of Minnesota have developed a machine learning-based modeling approach to generate land cover maps from satellite images combined with weather data. This approach provides accurate and timely land cover maps up to 5 months ahead of standard methods, generating predictions even before crops are harvested.

Phase of Development

TRL: 5-6

A working model of this technology currently exists.

Desired Partnerships

This technology is now available for:

- License
- Sponsored research
- Co-development

Please contact our office to share your business' needs and learn more.

Researchers

- [**Vipin Kumar, PhD**](#) Professor, Department of Computer Science and Engineering
- [**David Mulla, PhD**](#) Professor, Department of Soil, Water, and Climate

References

1. Praveen Ravirathinam, Rahul Ghosh, Ankush Khandelwal, Xiaowei Jia, David Mulla, and Vipin Kumar(2024) , <https://pubs.siam.org/doi/10.1137/1.9781611978032.52>, Proceedings of the 2024 SIAM International Conference on Data Mining (SDM), 445 - 453