# BEAN-Counter Quantitative Scoring of Chemical-Genetic Interactions

## **Chemical Genomics Barcode Sequencing**

BEAN-counter (Barcoded Experiment Analysis from Next-generation sequencing) software is a pipeline for quantitative scoring of chemical-genetic interactions from sequencing-based chemical-genetic interaction screens. It provides a complete toolset for processing multiplexed sequencing data from barcoded mutant pools into chemical-genetic interaction profiles, based on these basic inputs: 1) sequences of multiplexed, pooled PCR products amplified from barcoded strain pools; 2) a mapping from the barcode sequences to the strain identities; and 3) a mapping from the index (multiplex) tags to the identities of the chemical conditions. In addition, post-processing normalization steps perform quality control corrections for biases and effects observable in large-scale chemical genomic screens.

## **Chemical-Genetic Interaction Scoring and Post-processing**

BEAN-counter is a unique tool that implements both the scoring and post-processing steps in a single package. It is a full-featured pipeline that not only converts the raw data into chemical-genetic interaction scores but also performs well at scale and implements, featuring: 1) quality control checks on the strains and conditions; 2) normalization steps to remove technical artifacts and systematic biases especially visible in large-scale screens; and 3) methods to visualize the data at every step during its processing. BEAN-counter computes chemical-genetic interaction z-scores based on estimates of the standard deviation as a function of observed strain abundance.

## **BENEFITS AND FEATURES:**

- Quantitative scoring of chemical-genetic interactions from sequencing-based chemical-genetic interaction screens
- Corrects for biases and effects observable in large-scale chemical genomic screens
- Provides scoring and post-processing in a single package
- Computes chemical-genetic interaction z-scores

## APPLICATIONS:

- Chemical/pharmaceutical companies who perform chemical genomic experiments to determine compounds' modes-of-action.
- Processing raw data from chemical genomic experiments

Phase of Development Working prototype

#### Researchers

Chad Myers, PhD

Associate Professor, Computer Science and Engineering

External Link (www.cs.umn.edu)

Scott Simpkins

## **Technology ID**

20170001

## Category

Express License
Life Sciences/Research Tools
Software & IT/Algorithms
Software & IT/End User Software

#### View online



# References

 Scott W. Simpkins, Raamesh Deshpande, Justin Nelson, Sheena C. Li, Jeff S. Piotrowski, Henry Neil Ward, Yoko Yashiroda, Hiroyuki Osada, Minoru Yoshida, Charles Boone & Chad L. Myers(2019), https://www.nature.com/articles/s41596-018-0099-1, Nature Protocols, 14, 415-440