# Accessible clothing technologies, systems, and methods using integrated soft robotics

A collection of tools to self-tighten clothing for individuals with physical impairments





IP Status: Provisional Patent Application Filed

# **Applications**

- Self-tightening bra
- Self-tying shoes
- Self-tightening belt
- Clothing for individuals with physical impairments

## **Key Benefits & Differentiators**

• Hands-free tightening: Garments are designed to tighten from residual body heat

# **Technology Overview**

Individuals with physical impairments can struggle significantly with simple everyday tasks associated with dressing and undressing. Traditional garment structures that are ubiquitously used for fitting/tightening/fastening clothing – e.g., zippers, snaps, buttons, laces, or belts – require varying degrees of physical strength, dexterity, precision, and manual control that may exceed the abilities of individuals with age-related (or other) impairments. We propose to develop these garment-based technologies to overcome accessibility challenges in everyday clothing, through a suite of adaptive solutions that can support and assist with the daily challenge of tightening / loosening or fastening/unfastening a garment.

Researchers at the University of Minnesota have developed a suite of garment-based adaptive solutions for tightening, fitting, and fastening everyday clothing. Soft robotic actuators composed of temperature-sensitive shape memory alloys are integrated directly into garments to enable hands-free tightening -- these structures can be paired with traditional fastening elements such as buckles, hook-and-eyes, or clips, to create fully-automated, self-fastening

## **Technology ID**

2024-263

# Category

All Technologies
Engineering & Physical
Sciences/Design Specifications
Engineering & Physical
Sciences/Materials
Life Sciences/Human Health
Life Sciences/Medical Devices

#### Learn more



garments/clothing. These actuators function as augmented accessibility features, self-tightening bras or belts, and even hands-free tying of shoes.

# **Phase of Development**

### TRL: 3-4

Prototypes have been developed of multiple traditional garments including sneakers, bras, and belts

## **Desired Partnerships**

This technology is now available for:

- License
- Sponsored research
- Co-development

Please contact our office to share your business' needs and learn more.

#### Researchers

- Brad Holschuh, PhD Professor, Department of Design, Housing, and Apparel
- Lucy Dunne, PhD Professor, Department of Design, Housing, and Apparel
- Heidi Woelfle Lab Manager, Wearable Technology Lab

## **References**

 Xin-Ting Liu, Heidi Woelfle, and Brad Holschuh(2024), https://dl.acm.org/doi/10.1145/3675094.3681948, In Companion of the 2024 on ACM International Joint Conference on Pervasive and Ubiquitous Computing, 342-346