3D printed bionic skull for multimodal neural sensing

Applications

• Neurotechnology / Neuroscience

Technology Overview

Practical technologies that enable simultaneous mapping of neuronal activities from large brain volumes at cellular resolution currently do not exist. Researchers at the University of Minnesota have conceptualized a transparent bionic skull for volumetric mapping of single-cell neuronal activities of up to a 45 sq mm area in cortex of a freely moving mouse at physiologically relevant temporal resolution. The bionic skull design includes optical instrumentation for high resolution imaging and sensors to track ultra-fast genetically encoded voltage indicators.

Phase of Development

TRL: 2-3

Concept. Prototype under development.

Researchers

Suhasa Kodandaramaiah, PhD

Benjamin Mayhugh Assistant Professor, Mechanical Engineering

External Link (cse.umn.edu)

Michael McAlpine, PhD

Kuhrmeyer Family Chair Professor, Mechanical Engineering

External Link (cse.umn.edu)

Desired Partnerships

This technology is now available for:

- License
- Sponsored research
- Co-development

Please contact us to share your business' needs and learn more.

Technology ID

2019-293

Category

Engineering & Physical
Sciences/Design Specifications
Engineering & Physical
Sciences/Instrumentation,
Sensors & Controls
Life Sciences/Diagnostics &
Imaging
Life Sciences/Medical Devices
Life Sciences/Neuroscience
Agriculture &
Veterinary/Veterinary Medicine

Learn more

