MRI of Amyloid Plaque in the Brain

Technology #z04188

In Vivo MRI Imaging of Amyloid Plaque

A magnetic resonance imaging (MRI) method performs in vivo imaging of amyloid plaque in the brain, with or without a contrast agent. The image is reconstructed using data acquired from a very high resolution spin-echo imaging pulse sequence, which achieves contrast using a respiratory gated and cardiac gated spin-echo pulse sequence to reduce motion artifacts at the very high image resolution required to see plaque. A preparatory pulse sequence ensures that longitudinal magnetization remains constant for all acquired views, even if the effective TR changes during the scan due to irregular breathing.

Very High Resolution MRI using Respiratory Gating

The method, which acquires very high resolution in vivo images, uses respiratory gating. Each pulse sequence in the image acquisition is triggered by a signal from a physiological monitor that detects a specific point in the respiratory cycle. A preparatory pulse sequence precedes each imaging pulse sequence to create uniform view-to-view longitudinal magnetization in the presence of non-uniform view-to-view respiratory trigger times.

BENEFITS AND FEATURES:

- In vivo imaging of amyloid plaque in the brain
- Can be used with or without a contrast agent
- Very high resolution spin-echo imaging pulse sequence acquires data
- Respiratory gated and cardiac gated spin-echo pulse sequences reduce motion artifacts

Learn about more groundbreaking discoveries at www.research.umn.edu/techcomm
• Preparatory pulse sequence ensures that longitudinal magnetization remains constant for all acquired views
• Very high resolution

APPLICATIONS:

• Brain MRI
• Alzheimer’s disease

Phase of Development - Imaging; Pilot Scale Demonstration

<table>
<thead>
<tr>
<th>Interested in Licensing?</th>
</tr>
</thead>
<tbody>
<tr>
<td>The University relies on industry partners to scale up technologies to large enough production capacity for commercial purposes. The license is available for this technology and would be for the sale, manufacture or use of products claimed by the issued patents. Please contact Kevin Nickels to share your business needs and technical interest in this MRI technology and if you are interested in licensing the technology for further research and development.</td>
</tr>
</tbody>
</table>

Inventors

Michael Garwood, PhD
Professor, Department of Radiology, Center for Magnetic Research

IP: UM Docket z04188

For additional information, contact

Doug Franz
Technology Licensing Officer
exprlic@umn.edu
612-624-0869

Learn about more groundbreaking discoveries at www.research.umn.edu/techcomm