Bordetella pertussis Vaccine Targets Iron Receptors

Bordetella pertussis (Bp) is the bacterial agent of pertussis (whooping cough) in humans. Current acellular pertussis vaccines, which target only a narrow range of Bp virulence factors, lack efficacy in preventing respiratory tract colonization or disease transmission. Bp cell surface iron receptors are essential for the uptake of iron and are critical for growth in the host. New methods targeting Bp iron receptors have the potential to improve pertussis vaccine efficacy. Receptor-based vaccines would elicit the production of antibodies that could block iron uptake, starving Bp for iron and thus preventing growth. Further, they could enhance immune recognition of Bp for elimination by the host immune system.

This technology uses Bp receptor proteins required for the uptake of iron sources:

1. The receptor proteins can be added to existing pertussis vaccine formulations to improve efficacy.
2. Novel protein scaffold technology displays the antigenic regions of iron receptor proteins, yielding highly immunogenic, polymeric, potentially multivalent vaccine antigens.
3. Production of the receptors in Bp is stimulated by specific growth conditions resembling the host environment, yielding bacteria for use in improved whole cell pertussis vaccines.

Acellular, Whole-cell and Veterinary Vaccines

This approach targets iron receptor proteins essential for growth, instead of virulence factors that are dispensable. Bp iron receptor proteins are recognized by the immune system, and adding these proteins (or regions of those proteins) to a vaccine formulation stimulates the immune system to target those receptors. This effectively prevents Bp bacteria from obtaining the iron necessary to live and multiply, and improves immune recognition for clearance. Both acellular pertussis vaccines and whole cell pertussis vaccines (used in

Learn about more groundbreaking discoveries at www.research.umn.edu/techcomm
many countries) could benefit. In addition, the technology can be applied to veterinary vaccines for diseases caused by other *Bordetella* species, such as canine kennel cough, feline bordetellosis or atrophic rhinitis.

BENEFITS AND FEATURES:

- Increases efficacy of both acellular and whole-cell pertussis vaccines
- Targets *Bp* iron receptors
- Blocks the iron uptake pathway necessary for *Bp* survival
- Generates an improved immune response for *Bp* recognition and clearance

APPLICATIONS:

- Improved acellular pertussis and whole-cell pertussis vaccines
- Veterinary vaccines for diseases (*e.g.*, kennel cough, atrophic rhinitis) caused by other *Bordetella* species
- Method for producing chimeric antigens on a protein scaffold may be adapted to generate vaccines for other pathogens

Phase of Development - Proof of concept

Inventors

Timothy J. Brickman, PhD

Researcher, Department of Microbiology and Immunology

Sandra K. Armstrong, PhD

Professor, Department of Microbiology and Immunology
For additional information, contact

Kevin Anderson
Technology Licensing Officer
exprlic@umn.edu
612-624-8293