Office for Technology Commercialization

High-efficiency Pyrrole Synthesis

Technology #20150075

Questions about this technology? Ask a Technology Manager

Download Printable PDF

Image Gallery
PyrrolePyrrole Synthesis
Ian Tonks, PhD
Assistant Professor, Department of Chemistry, College of Science and Engineering
External Link (
Managed By
Larry Micek
Technology Licensing Officer 612-624-9568
Patent Protection

Provisional Patent Application Filed

Unprecedented Pyrrole Yield

A newly developed technology for synthesizing polysubstituted pyrroles employs a titanium-catalyzed reaction of alkynes and diazenes to form the substituted pyrrole. The process, which uses an early transition metal catalyst and works through a 3-component formal [2+2+1] oxidative coupling of alkynes and diazenes, can catalyze cyclization with unprecedented atom efficiency and reaction yield for pyrrole formation. This process has a high conversion rate, high selectivity and can synthesize compounds containing variety of alkyl and aromatic side chains.

Alternative to Paal-Knorr Reaction

Pyrroles and derivatives are structurally important heterocycles used in pharmaceuticals, natural products, dyes and conducting polymers. Synthesizing polysubstituted pyrroles is often challenging and current methods, like the Paal-Knorr reaction, often result in low atom economy, in which two oxygen atoms are lost per pyrrole ring produced and/or two water molecules are released as a byproduct. This new catalytic method results in 100% atom efficiency during the pyrrole ring formation reaction and delivers greater than 90% product yield.


  • 100% atom economy; no byproducts created
  • Unprecedented pyrrole yield (greater than 90%)
  • Catalytic reaction fueled by cost-effective, earth-abundant and nontoxic titanium
  • High conversion rate and high selectivity
  • May synthesize pyrroles with a variety of alkyl and aromatic side chains
  • Used for synthesis of fine- and industrial-grade feedstock chemicals

Phase of Development - Proof of concept