Improved MRI Method Uses Temperature Rise Constraints

Technology #20150061

Parallel RF and Voxel Cluster in MRI Scans

A new method using parallel transmission radiofrequency (RF) pulses for magnetic resonance imaging (MRI) under strict temperature rise constraints is expected to provide safer and more powerful MRI exams. The method compresses a model for a subject to be scanned by the MRI system into voxel clusters. Each voxel cluster defines a virtual observation point with peak sensitivity to the local temperature rise for the voxel cluster. The parallel transmission RF pulse is then based on an approximation of a minimization criterion having a local temperature rise component based on the peak sensitivity of each virtual observation point. The approximation comprises a weighted sum of the local temperature rise values for each virtual observation point.

Current SAR Constraint Methods Pose Safety Concerns

Existing technologies address pulse design problems through SAR constraints, an easy technique but one that poses safety concerns. This new technology is safer and simulations show that it can also yield better RF pulse performance.

BENEFITS AND FEATURES:

• Safer and more powerful radiofrequency pulse sequences
• Temperature rise can be controlled directly and efficiently with the use of suitable compression schemes and powerful algorithms

APPLICATIONS:

• Ultra-High Field Magnetic Resonance Imaging (7T and 10.5T MRI)

Learn about more groundbreaking discoveries at www.research.umn.edu/techcomm
Phase of Development - Proof of Concept: mathematical proof, numerical demonstration.

Inventors

Pierre-Francois Van de Moortele, PhD
Associate Professor, Center for Magnetic Resonance Research, Department of Radiology

Nicolas Boulant, PhD
CEA and Neurospin, France

IP: UM Docket 20150061

For additional information, contact

Kevin Nickels
Technology Licensing Officer
explic@umn.edu
612-625-7289