Solid Contact Electrochemical Sensor

Technology #20140304

Low-cost Ion Selective Electrode with Solid Contact

A new type of solid-contact ion-selective electrode (ISE) introduces low-cost colloid-imprinted mesoporous (CIM) carbon material as the solid contact. The CIM carbon, which is inexpensive and easy to manufacture, acts as an intermediate layer between a gold electrode and an ionophore-doped ISE membrane. The CIM carbon’s open and interconnected pore texture offers significantly higher capacitance than current technology.

<table>
<thead>
<tr>
<th>MN-IP Try and Buy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Try</td>
</tr>
<tr>
<td>• Up to twelve month trial license</td>
</tr>
<tr>
<td>• Fee is $10,000 for twelve months</td>
</tr>
<tr>
<td>• Fee is waived for MN companies or if sponsoring $50,000+ research with the University</td>
</tr>
<tr>
<td>• No US patent expenses during trial period</td>
</tr>
<tr>
<td>Buy</td>
</tr>
<tr>
<td>• $15,000 conversion fee (TRY to BUY)</td>
</tr>
<tr>
<td>• Royalty rate of 3% (2% for MN company)</td>
</tr>
<tr>
<td>• Royalty free for first $1M in sales</td>
</tr>
</tbody>
</table>

** View the Term Sheet **

Learn about more groundbreaking discoveries at www.research.umn.edu/techcomm
Electrochemical Sensor Requires Little Calibration

The new sensor requires minimal calibration. This benefit is due to a redox couple incorporated into the ISE, yielding a standard deviation of E° as low as 0.7 mV. In addition, the CIM carbon’s high purity, hydrophobic characteristics and low number of redox-active functional groups give the ISE excellent potential stability and resistance to light, oxygen, carbon dioxide and water interference.

BENEFITS AND FEATURES OF SOLID CONTACT ELECTROCHEMICAL SENSOR:

- Requires minimal calibration
- Excellent resistance to interference from light, oxygen, carbon dioxide and water
- Long-term stability and excellent reproducibility
- Colloid-imprinted mesoporous (CIM) carbon is inexpensive and easy to manufacture
- Open and interconnected CIM carbon pore structure leads to higher capacitance

Phase of Development - Prototype Development

Inventors

Philippe Buhlmann, PhD

Professor, Chemistry, College of Science and Engineering

Andreas Stein, PhD

Professor, Chemistry, College of Science and Engineering

IP: UM Docket 20140304

For additional information, contact

Leza Besemann
Senior Marketing Manager
exprlic@umn.edu
612-625-8615

Learn about more groundbreaking discoveries at www.research.umn.edu/techcomm